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On the formation and propagation of vortex rings
and pairs of vortex rings
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Axisymmetric high-Reynolds-number laminar flows are simulated numerically. In
particular, we consider the formation and propagation of single vortex rings from a
circular orifice in a plane boundary, and pairs of vortex rings from a circular annulus
in a plane boundary. During formation, single rings grow within an essentially
potential flow, as in the similarity theory of Pullin (1979). When released they are
shown to propagate in an almost inviscid manner, as described by Saffman (1970).
Pairs of vortex rings, formed at a circular annulus, have been studied by Weidman &
Riley (1993), both experimentally and computationally. They conclude from their
observations that the behaviour of the rings depends primarily upon two parameters,
namely the impulse applied to the fluid, during ring formation, and the gap width of
the annulus. The results we present in this paper confirm the dependence of the flow
on these parameters.

1. Introduction

The motivation for the present investigation is largely provided by the work of
Weidman & Riley (1993). They presented the results from an experiment, with water
as the working fluid, in which the fluid was forced by a piston through a circular
annulus, with the gap width relatively small compared to its diameter. Vortex rings
were formed at the edges of the annulus, with circulation of opposite sign, which
propagated into the fluid exhibiting a variety of behaviour. A numerical simulation,
based upon the Navier–Stokes equations, was in qualitative accord with observation.
In a subsequent paper Riley (1993) examined further, by numerical simulation, a wider
variety of behaviour exhibited by pairs of vortex rings. At high Reynolds numbers it
was conjectured by Riley that these interactions between the vortex rings are largely
inviscid phenomena. With that in mind, Wakelin & Riley (1996) have used two inviscid
models, based on both a thin-ring theory and a contour-dynamic approach, to study
the behaviour of pairs of vortex rings. The results reflect, satisfactorily, the viscous-
flow behaviour.

None of the computational efforts mentioned above address the formation of the
vortex rings. In the viscous calculations the not unreasonable assumption was made
that the vortex rings when formed, at the end of the piston stroke, would have thin,
axisymmetric cores, which were then modelled by a viscous line vortex (Lamb 1932).
The circulation about the outer ring Γ

!
, and hence the ring Reynolds number Γ

!
}ν, was

determined from the observed timescale of a particular experiment, and the circulation
about the inner ring was fixed by seeking the best agreement with experiment, which
was highly satisfactory. In this paper we are concerned not only with the propagation
of vortex rings, but also their formation. As well as pairs of rings we consider the
formation and propagation of single rings.
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is introduced.

Figure 1 shows the configuration within which we generate, and study, the vortex
rings. A circular cylindrical tube is open at one end. At the other it contracts abruptly.
Within it may be a smaller circular cylinder, so that when fluid is forced from the lower
end of the narrow tube a vortex ring forms at the lip where the tube widens or,
correspondingly, a pair of vortex rings when the inner tube is present. The numerical
method for solution of the unsteady Navier–Stokes equations is an ADI method, based
on that described by Weidman & Riley (1993). The main differences are in the
boundary conditions at the open, upper end of the cylinder, the inflow conditions at
the lower end and the accommodation of the singular behaviour at the corners of the
expansion, and the inner cylinder, when present.

The first results we obtain, in §4, are for the formation of single rings, at the corner
of the expansion when the inner cylinder is absent. Although we are not able to make
a direct comparison with Pullin’s (1979) similarity theory, our results are not
inconsistent with it. And furthermore, we confirm that the basis for his theory, namely
a vortex ring growing within an initial potential flow, is sound. With the vortex ring
formed, and propagating freely with its self-induced velocity, we see that its speed is
almost constant as in an inviscid fluid. With that in mind we compare the shape of the
cross-section of the ring with an inviscid ring that has the same speed, radius and
circulation at a given instant from the family of Norbury (1973) rings. Unsurprisingly
they are very similar. By considering different cases we show that the flow
characteristics are largely independent of Reynolds number, but are significantly
influenced by the impulse of the initial inlet flow. The observation of weak dependence
upon Reynolds number is reinforced by a comparison with Saffman’s (1970) result for
the velocity of viscous vortex rings at high Reynolds number.

With the inner cylinder in place, see figure 1, we are able to generate pairs of vortex
rings. Although our configuration from which these are formed is much simpler than
that in the experiments of Weidman & Riley (1993), we do expect to observe behaviour
similar to that in the experiments, and indeed we do. In particular we confirm that the
annular gap width and impulse of the inlet flow are the crucial parameters that
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determine the flow characteristics. The axisymmetric flows with which we are
concerned fall into three main categories. If, on formation, the inner ring is sufficiently
strong it separates from the outer ring, and propagates back towards its origins. If it is
sufficiently weak the interaction between the rings results in it being pushed ahead of,
and then outside, the outer ring. Between these is the delicate balance that can result
in a quasi-steadily propagating structure, named a vortex-ring pair by Weidman &
Riley, in which the two vortex rings propagate in an almost co-planar manner. All
three cases have been observed in the experiments, and created in the simulations
described in §4. The flow visualizations of Weidman & Riley (1993) yielded little
information about the flow structure beyond the vortex ring trajectories. Coloured dye
was entrained into the vortex rings during formation and a residual blob at the centre
of the ring core allowed it to be traced. We also present trajectories of the vortex rings
for ease of illustration. But our simulations allow further insight into the flow
structure. Our results show, in particular, that the inner ring is always the ‘ junior
partner ’ in the sense that it is slightly weaker on formation, and in all cases decays
more rapidly than the outer when in its proximity, to the extent that it almost loses its
identity completely in those situations where close contact is maintained throughout
most of the interaction. The flow structures that we predict also raise questions about
the role of the initial conditions used in the numerical simulations of Weidman & Riley.

2. The governing equations

The governing equations are the Navier–Stokes equations for an incompressible
fluid. From these we have Helmholtz’s equations for the vorticity ω« as

¥ω«
¥t«

®¡g (�«gω«)¯®ν¡g¡gω« (2.1)

together with
¡[�«¯ 0, (2.2)

where ν is the kinematic viscosity, �« is the velocity, t« is the time and

ω«¯¡g �«. (2.3)

We are concerned with the generation and subsequent motion of axisymmetric
vortex rings in a circular cylinder of total length l. At the inflow end the cylinder is of
radius a

!
, which changes abruptly to a radius a" a

!
at a distance l

!
along the cylinder.

This results in a convex corner of angle π}2 in the cylinder wall at which vorticity is
shed when fluid is forced through the cylinder. We use cylindrical polar coordinates (r«,
θ,x«), with the corresponding velocity components (u«, �«,w«). Let Γ

!
be a typical

circulation associated with a ring. The physical variables are made dimensionless with
respect to the length a, time a#}Γ

!
, velocity Γ

!
}a and vorticity Γ

!
}a#.

We assume that the flow is axisymmetric and that there is no swirl, so that �¯ (u,
0,w) and ω¯ (0, ζ, 0), where ζ¯ ¥u}¥x®¥w}¥r. To satisfy (2.2) we introduce a stream
function ψ such that

u¯
1

r

¥ψ
¥x

, w¯®
1

r

¥ψ
¥r

. (2.4)

Rather than use the vorticity component ζ we choose to work with a vorticity
function defined as

γ¯®rζ¯ r0¥w¥r®
¥u
¥x1 . (2.5)
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The equations for γ and ψ are given by the θ-component of (2.1) and by (2.2)
respectively as

¥γ
¥t

u
¥γ
¥r

w
¥γ
¥x

®
2uγ

r
¯

1

Re
D#γ, (2.6)

D#ψ¯®γ, (2.7)
where

D#¯
¥#

¥r#
®

1

r

¥
¥r


¥#

¥x#

and Re¯Γ
!
}ν is the Reynolds number.

The computational domain is defined as the union of the two regions 0% r%R
!
,

0%x!X
"
and 0% r% 1, X

"
%x%X

!
, where R

!
¯ a

!
}a, X

"
¯ l

!
}a, X

!
¯ l}a and the

axis of symmetry lies along r¯ 0. On the boundary x¯ 0 we introduce an inflow
velocity w

!
(r, t)¯ f(r) g(t). This allows us to simulate the motion of a piston in the tube,

by introducing a spatial variation that consists of a uniform core flanked by a thin
boundary-layer region. In all the cases considered the choice of g(t) is such that the ring
is well clear of the boundary x¯X

"
when the inflow ceases. The choice of f(r) is not

crucial, as flow conditions at x¯X
"

are largely independent of it. On x¯X
!

the
relatively unrestrictive condition ¥u}¥x¯ ¥γ}¥x¯ 0 is adopted; for a discussion of
outflow conditions reference may be made to Roache (1972). All other boundaries are
impermeable no-slip boundaries at which u¯w¯ 0, ψ is prescribed and conditions for
γ may be derived. Initially, at time t¯ 0, all flow variables are zero over the whole
domain.

3. The numerical method

Equations (2.6) and (2.7) together with appropriate initial and boundary conditions
are solved using finite-difference methods. A uniform grid with nodes at (r

i
,x

j
) for i¯ 1,

…,m, j¯ 1,…, n is used; δr¯ (m®1)−" and δx¯X
!
(n®1)−" are the grid spacings.

The grid is formed so that the corner of the boundary at x¯X
"
, r¯R

!
is located at

a grid point, say R
!
¯ r

I
¯ (I®1) δr and X

"
¯x

J
¯ (J®1) δx. The values of ψ and γ

at each point in the domain, that is, ψ
i,j

and γ
i,j

for i¯ 1,…, I, j¯ 1,…, J®1 and
i¯ 1,…,m, j¯ J,…, n are determined for t" 0.

Since (2.6) is parabolic we can march the vorticity function forward in time, with
steps of size δt, whilst ensuring that the elliptic equation (2.7) and the boundary
conditions are satisfied at each time. At each timestep the values of ψ and γ are known
on some sections of the boundary. The remaining boundary values are calculated
iteratively during the process to update values of γ

i,j
and ψ

i,j
inside the domain.

In the finite-difference representations of (2.6) and (2.7) all spatial derivatives are
represented by second-order centred differences. Given values of γ

i,j
at each grid point,

(2.7) is solved iteratively for ψ
i,j

using successive over-relaxation. The vorticity
equation (2.6) is integrated in time using an alternating-direction implicit (ADI)
method as described, for example, by Weidman & Riley (1993). After each ADI step
it is necessary to update values of the vorticity function γ on the whole boundary,
except for the symmetry line r¯ 0, and values of the stream function ψ on the outflow
boundary. The vorticity function on the impermeable boundaries must be calculated
to ensure that the no-slip condition is satisfied there. This is achieved, and the vorticity
function on the inflow boundary calculated, following Woods (1954), ensuring second-
order accuracy. Conditions on the outflow boundary are implemented as in Roache
(1972) to update both γ and ψ. With these updated boundary conditions equation (2.7)
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is solved to give an updated approximation for ψ, and the process continued iteratively
over the time step until successive iterates differ by less than a prescribed tolerance.

The presence of the singularity in the vorticity ζ, and therefore in the vorticity
function γ, at r¯R

!
, x¯X

"
, that is, the convex corner of the bounding wall,

invalidates the centred finite-difference representations of ¥γ}¥r at the point (r
I
®δr,

x
J
) and ¥γ}¥x at (r

I
,x

J
δx). In order to determine the values of γ at these two grid

points we employ a local polar coordinate solution with origin at (r
I
,x

J
) and update

the values each time the boundary values of γ are updated.
We assume that the flow is locally two-dimensional and use the results of Moffatt

(1964). Sufficiently close to the corner inertial forces are negligible and for steady-state
flow the stream function satisfies Stokes equation ~%ψ¯ 0. We seek a solution near the
corner of the form

ψ&R!

!

sw
!
(s, t) ds¯ 3

¢

i="

ρλ
iF

i
(t)G

i
(φ), (3.1)

where (ρ,φ) are polar coordinates centred on (r
I
,x

J
), λ

"
!λ

#
!… are unknown

constants and F
i
(t) and G

i
(φ) are unknown functions of t and φ. This is the form of the

solution for steady flow with functions of time F
i
(t) replacing constants. It is

appropriate for unsteady flow provided that the Reynolds number is not large
compared to ρ−#. Substituting the expansion (3.1) for the stream function into the
Stokes equation and solving subject to the no-slip conditions on the solid boundaries
φ¯®$

%
π, $

%
π gives for the first two terms of (3.1)

ψ&R!

!

sw
!
(s, t) dsCA*(t) ρλ

" (cosλ
"
φ®

cosλ
"
α

cos (λ
"
®2)α

cos (λ
"
®2)φ*

B*(t) ρλ
# (sinλ

#
φ®

sinλ
#
α

sin (λ
#
®2)α

sin (λ
#
®2)φ* ,

where λ
"
¯ 1.5445, λ

#
¯ 1.9085, α¯ $

%
π, and A*(t), B*(t) are unknown functions.

Therefore

®
γ

r
¯ ζCD*(t) ρλ

"−# cos (λ
"
®2)φE*(t) ρλ

#−# sin (λ
#
®2)φ, (3.2)

where
D*(t)¯ 4A*(t) (1®λ

"
) cosλ

"
α}cos (λ

"
®2)α,

and
E*(t)¯ 4B*(t) (1®λ

#
) sinλ

#
α}sin (λ

#
®2)α.

The two functions D*(t), E*(t) are updated during every iteration, at each time level,
from the values of γ at (r

I
δr,x

J
), (r

I
,x

J
®δx). These updated values are then

employed in equation (3.2) to determine the values of the vorticity function at (r
I
®δr,

x
J
) and (r

I
,x

J
δx).

The method is easily extended to model axisymmetric flow due to fluid motion
through an annular orifice. Conditions for the solid boundaries r¯R

i
, 0%x%X

"
and

x¯X
"
, 0% r%R

i
must be introduced, together with a treatment for the singular

behaviour at the corner (R
i
,X

"
).

4. Results

We consider first the formation and development of a single vortex ring. We take the
radius of the orifice in the plane boundary, x¯ 0.2, as R

!
¯ 0.25. The flow is initiated

at x¯ 0 where we introduce the axial velocity profile

w
!
(r, t)¯ f(r) g(t), (4.1)

where
f(r)¯²1®e(!(r−R!)´. (4.2)
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F 2. Contours of uniform vorticity during the formation of a single vortex ring, with an inlet
flow (4.1) (t

!
¯ 2, I| ¯ 1.250, Re¯ 2000, g(t)¯ 1®e−&t

#) at times (a) t¯ 0.7, (b) t¯ 1.0, (c) t¯ 2.0.

This corresponds to an inlet profile which has an almost uniform core flanked by thin
boundary layers. For g(t) we ensure that as tU 0, g(t)¯O(t#), to eliminate the singular
behaviour that would be present at solid boundaries with, for example, an impulsive
inlet profile. An important parameter that characterizes the flow is the impulse I «
which, in dimensionless form, we define as

I| ¯
I «

πρR#

!
Γ
!

¯
2

R#

!

& t!

!

dt&R!

!

rw#

!
dr, (4.3)

where t
!

is the time at which the inflow ceases.
For our first example we take Re¯ 2000, g(t)¯ 1®e−&t# and t

!
¯ 2 which gives I| ¯

1.250; and for all of our single-ring calculations we take δt¯ δr¯ δx¯ 5¬10−$, and
X

!
¯ 4. In all the cases considered we have checked the accuracy of our calculations by

halving the temporal and spatial mesh size, at the same time reducing X
!

by a factor
of two, and comparing the solutions over the initial formation period. The agreement
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F 3. Streamline pattern corresponding to figure 2(b).

recorded confirms the accuracy of the solutions presented below. In figure 2 we show
the early stages of ring formation. At t¯ 0.7, figure 2(a), the ring has clearly formed
at the lip of the orifice, and by t¯ 1.0 is moving away under its own self-induced
velocity, figure 2(b). Note that the circulation about the newly formed ring creates a
thin boundary layer on x¯ 0.2, r& 0.25. Within this boundary layer the vorticity, ζ

b
,

is initially comparable with that in the core, ζ
c
. For example at t¯ 0.7, max rζ

c
r¯ 36.6,

max rζ
b
r¯ 41.8 and at t¯ 1.0, max rζ

c
r¯ 28.9, max rζ

b
r¯ 27.0. Thereafter the

boundary-layer vorticity rapidly decays. Pullin (1979) has developed a similarity theory
for the initial stages of ring formation from tube and orifice openings, created by a piston
that moves with speed tm. The theory is applied to the flow from a tube, and an orifice
in an infinite flat plate. It is based on the idea that the vortex ring during formation
is embedded within a potential flow, which is known exactly for the orifice in a thin plate,
and has been calculated numerically by Pullin for the tube. In figure 3 we show the
streamline pattern for the case under consideration here, at t¯ 1.0, which may be
compared with the corresponding vorticity distribution in figure 2(b). It is clear that
the ring is indeed forming in an initial potential flow, and that the boundary layer
induced on the surface is of little dynamical significance. Pullin also considers the core
structure within his similarity framework, and identifies three distinct regions. These
are : (I) a tightly wound spiral-like thin shear layer from the forming edge, (II) an
essentially inviscid rotational core, and (III) a viscous subcore. For the present
example, if the vorticity contours ζ¯ 2.5, 17.5 are taken to be representative of regions
(II) and (III) respectively then we find, over the range 0.7% t% 1.0, that r

I
E 0.1t#.#$,

r
II

E 0.07t!.*), r
III

E 0.03t!.%%. The time-dependence g(t) adopted here is not ap-
propriate for the similarity theory. However, gE 5t# for t' 1, and applying the
similarity theory with m¯ 2 gives the time-dependence for the scale of the three regions
as t#.#&, t".!%, t!.& respectively. As the ring continues to move away from the orifice, the
boundary layer it induces on the plate dies away, until at t¯ t

!
¯ 2 it is virtually

eliminated as we can see in figure 2(c). For t" 2 the vortex ring is free to detach itself
completely from the orifice, and move away with its own self-induced velocity. The
process by which this takes place is of interest. Immediately the inlet flow ceases a
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vortex ring of opposite sign to the primary ring is formed at the lip of the orifice. This
secondary ring begins to move back into the inlet tube x! 0.2, and at the same time
draws back some of the vorticity previously shed in t! 2.0. This situation is well
illustrated at t¯ 2.3 in figure 4. The primary vortex is, meanwhile, continuing to
absorb the shed vorticity, and it is by these two mechanisms that the ‘umbilical cord’
connecting the vortex ring and orifice lip, as seen for example in figure 2(c), gradually
disappears. The process is largely complete by t¯ 2.5. Thereafter the ring becomes an
independent coherent structure propagating at almost constant speed with little change
in cross-section, as for example in figure 5 at t¯ 5. The trajectory of the vortex ring,
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F 6. Trajectory of the vortex centre (a) for the case of figure 2: t¯ 1.0 (1.0) 11.0. (b) As (a)
but with Re¯ 4000; t¯ 1.0 (1.0) 8.0. (c) For the case of figure 8; t¯ 1.0 (1.0) 4.0.

determined from the position of maximum vorticity, is shown in figure 6(a). Although
this is difficult to locate at small time, the main features are well illustrated. For
0% t% 2.0 the ring increases in diameter ; when the inlet flow ceases there is a slight
reduction in ring diameter. The ring is now moving with almost constant speed, in fact
gradually slowing as it again, gradually, increases in diameter. In figure 7 we show the
shed circulation as a function of time. This is calculated from

Γ(t)¯&
S

ζ(r,x, t) dxdr, (4.4)

where the domain of integration S is the region of flow in x" 0.2, chosen so that the
thin boundary layer 0.2%x# 0.22δx, r& 0.25 is excluded. The shed circulation
increases almost linearly for most of the formation period, reflecting the time-
dependence, g(t), of the inlet flow. When the inlet flow ceases, at t¯ 2.0, there is a sharp
reduction in circulation for the reason advanced earlier, namely that previously shed
circulation is drawn back into the inlet tube. The ring may be said to be fully formed
at t¯ 2.5, at which time the circulation about the ring Γ

r
E 0.83, so that the ring

Reynolds number Γ «}ν¯Γ
r
ReE 1667.

We have investigated a second example with these same inlet conditions, but with
Re¯ 4000. The dynamics of formation and propagation are little different from those
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F 7. The shed circulation as a function of time for the case of figure 2
with Re¯ 2000 (——), and with Re¯ 4000 (-- - - - - - - - -).
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F 8. The shed circulation as a function of time for the configuration of figure 2, and inlet
flow (4.1) (t

!
¯ 0.5, I| ¯ 2.410, Re¯ 2000, g(t)¯ 3(1®e−%!t

#)).

described above, as may be inferred from the shed circulation, and ring trajectory,
shown in figures 7 and 6(b) respectively. There is only a weak dependence upon the
Reynolds number, manifested for example in a slightly greater propagation speed, a
point to which we shall return later.

In a final example we have taken g(t)¯ 3(1®e−%!t#), t
!
¯ 0.5, with corresponding

impulse I| ¯ 2.410, and Re¯ 2000. The processes by which the ring is formed are as
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F 9. The progression of the vortex core for the case of figure 8 (——)
compared with result (4.5) with F¯ 4.103 (- - - - - - - - - -).

described above. However, in this case circulation is shed at a much greater rate as we
see in figure 8. When the inlet flow ceases we again note a sharp drop in circulation for
the reasons advanced above. The ring, when fully formed at t¯ 1, say, has circulation
Γ
r
E 1.68 which leads to a ring Reynolds number Γ

r
ReE 3360. The ring formed by this

greater impulse propagates more rapidly as we see from the trajectory in figure 6(c).
Also, as we may expect, it results in a ring that is more compact, or of smaller cross-
sectional area. For rings of small circular cross-section Saffman (1970) has estimated
the velocity of viscous vortex rings. In particular, if the circulation can be expressed in
the form Γ¯Γ(s}t"/#), where s is a radial coordinate measured from the centre of the
cross-section, then the ring velocity w

r
takes the form

w
r
¯

1

4πR
²F(Re

r
,R)®"

#
ln t…´. (4.5)

In (4.5) R is the ring radius, and Re
r
¯Γ !

r
}ν is the ring Reynolds number upon which

F depends only weakly; for example, with a distribution of Γ as in Lamb’s vortex we
have F¯ 0.828"

#
lnR#Re

r
. For the example under consideration our ring has radius

R¯ 0.304 and a relatively small, almost circular, cross-section. If we set F¯ 4.103 then
there is close agreement between (4.5) and our calculated values of w

r
, as shown in

figure 9 for 1% t% 3.5, beyond which the presence of the upper boundary influences
the flow. Furthermore the acceleration of the ring is indistinguishable from the result
dw

r
}dt¯®(8πRt)−", which is Reynolds-number independent. These results both

substantiate our earlier comment about the weak dependence of the flow upon
Reynolds number, and demonstrate the robustness of Saffman’s theory.

The above discussion shows that when the fully formed ring is moving freely, the
dynamics are largely inviscid in nature. This invites a comparison with inviscid theory.
Inviscid vortex rings have been considered by Norbury (1973), in which the vorticity
increases linearly across the core of the vortex ring. It is of interest to compare, in this
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F 10. Contours of uniform vorticity for the case of figure 8 at (a) t¯ 1.0, (c) t¯ 2.0, and
(b) a cross-section of the core of the equivalent Norbury ring.

present example, our ring with an ‘equivalent ’ Norbury ring. In figure 10(a) we show
the cross-section of our virtually fully formed ring at t¯ 1.0. In figure 10(b) we show,
in cross-section, the equivalent Norbury ring, designed to have the same speed, radius,
and circulation at this instant. In figure 10(c) we reproduce our viscous ring at t¯ 2.0.
The similarity of these is evident. This not only confirms the largely inviscid nature of
the flow when the ring is fully formed, but also suggests that the detailed distribution
of vorticity in the core of the ring is relatively unimportant in determining its dynamics.

We turn our attention next to the formation and propagation of coaxial pairs of
vortex rings, including the vortex-ring pair. The latter is a configuration first
investigated by Weidman & Riley (1993), defined as a coaxial pair that propagates in
a coherent, coplanar manner. The investigation of Weidman & Riley included both
experiment and numerical simulation. In the experiments pairs of vortex rings were
formed by the impulsive motion of liquid, provided by the motion of a manually
activated piston, through an annular circular orifice. Vortex rings of opposite
circulation are formed at the lip of the orifice. Their subsequent behaviour depends
upon the relative strength of the circulation about the rings. Assuming that the rings
remain stable and coaxial, their motion may be explained as follows. As we have seen
above, a single ring created at the outer edge of the annulus would be self-propelled
away from it. The mutual interaction between two rings, formed as described above,
acts to push them both in this same direction. However, the self-induced velocity of the
inner ring is in the opposite direction. If it were sufficiently strong then one might
suppose it would separate from the outer ring and propagate back to its point of origin,
whilst if it were sufficiently weak one might expect that it would be pushed through,
and ahead, of the outer ring. These alternatives suggest a particular balance that would
result in the vortex-ring pair. Of course, a truly steady vortex-ring pair can never be
fully realized, owing to the continuous redistribution of vorticity by viscous diffusion.
Nevertheless, the experiments did show that quasi-steadily propagating vortex-ring
pairs are a viable proposition, if only over relatively short distances before ultimate
decay or destruction by instability. The simulation of these flows carried out by
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Weidman & Riley was in two parts. An inviscid thin-ring theory readily yielded the
vortex-ring pair. But most effort was expended on Navier–Stokes calculations. The
approach was as follows. No attempt was made there to simulate vortex-ring
formation. Instead the initial configuration had each ring represented by the viscous
line vortex solution of Lamb (1932). An exhaustive investigation, continued by Riley
(1993), was carried out for different orifice gap widths with the rings initially co-planar
at a finite time. And it was shown inter alia that a vortex-ring pair, as discussed above,
could be formed. To simulate the experiments these vortex rings were placed at the
location of the observed rings, at the time when the piston motion ceased. By
judiciously choosing the circulation ratio of the two rings, excellent agreement with the
observed ring trajectories was obtained.

In our present study we do not attempt an accurate simulation of the experiments
of Weidman & Riley, on account of the complex configuration of their vortex-ring
generator. We adopt instead the simpler geometry of figure 1 in which an inner cylinder
is placed in the tube from which fluid is forced, to create an annular gap in the plane
of x¯ 0.2. In these calculations the outer radius of the annulus was taken as R

!
¯ 0.5,

and the outer boundary as X
!
¯ 3, which is less than for the single-ring calculations

since more computer time is required for these flows of greater complexity. The
computational mesh size was taken to be the same as for the single-ring calculations
with the Reynolds number Re¯ 2000 which is comparable with those of the
experiments. For the inlet flow we take t

!
¯ 0.3, and

w
!
¯λ(1®e−&!!t#) ²1®e"&!!!(r−Ri) (r−R!)´, (4.6)

where R
i
is the inner radius of the annulus.

Weidman & Riley identify the annular gap width, or radius ratio δ¯R
i
}R

!
, and the

impulse I|, in which the orifice area A
!
¯π(R#

!
®R#

i
) is now taken as the characteristic

area, as the key parameters that determine the nature of the flow following the
formation of the rings. As we have already remarked it is not our intention to
accurately simulate the experiments of Weidman & Riley. Our aim is to demonstrate
that the various scenarios observed in their experiments can be reproduced from our
simpler configuration. The formation process for the two rings is similar to that
described for the single ring. However, we do note that for t" t

!
we now have a

secondary pair of vortex rings forming at the orifice lips, as has been observed in the
experiments.

In our presentation of results we concentrate largely on the vortex trajectories, as
indeed did Weidman & Riley. In the experiments small blobs of dye provided a visual
marker of the centre of the vortex-ring core sections. However, as we shall see later,
such information reveals only partially the flow characteristics. Figure 11 shows the
influence of gap width, or radius ratio δ, on the flow, although we note that the impulse
I| varies marginally in this set of results. In figure 11(a), for relatively small δ, the
interaction between the rings is not significant. The inner ring penetrates only a short
distance before separating and moving back with its own self-induced velocity. As the
gap closes, figure 11(b), the penetration distance of the inner ring increases, due to the
nearness of the outer ring, before it again separates and moves back. Closing the gap
even further, and by only one mesh increment δr, brings about a dramatic change in
the flow behaviour as we see in figure 11(c). The mutual interaction between the rings
now results in the inner ring being pushed slightly ahead of the outer. As soon as this
happens the interaction leads to an increase in the diameter of both rings, with the
result shown in the figure. With a further increase in δ, figure 11(d ), this process is
accelerated. We may anticipate that a situation will exist, between those shown in
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F 11. Vortex-ring trajectories, t¯ 0.5 (0.25) 4.0, for the pairs formed with inlet flow (4.6),
R

!
¯ 0.5, λ¯ 2.0, and with Re¯ 2000. (a) R

i
¯ 0.4, I| ¯ 0.975; (b) R

i
¯ 0.42, I| ¯ 0.963; (c) R

i
¯ 0.425,

I| ¯ 0.959; (d ) R
i
¯ 0.43, I| ¯ 0.953.
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figures 11(b) and 11(c), that corresponds to a vortex-ring pair. The results of figure 11
are consistent with those shown in figure 15 of Weidman & Riley, namely that a
transition from the return, or separation, of the inner ring, to no return, takes place as
δ increases. We next consider the effect of the impulse I|. For this we fix R

i
¯ 0.425, so

that δ¯ 0.85 and I| ¯ 0.240 λ#. The results are shown in figure 12. There we see a
transition from no return to separation, and return, as λ increases from 1.9 to 2.5. This
again is consistent with the results of Weidman & Riley. At an intermediate value, λ
¯ 2.269, shown in figure 12(b), we see an example of a vortex-ring pair, in the sense
of Weidman & Riley (1993) and Riley (1993) who have used that term for a coherent
structure seen, or calculated, to propagate an axial distance R

!
and 2.5 R

!
, respectively.

However, as we have already remarked neither the vortex trajectories nor other details
reported from the flow visualizations reveal much of the structure of the flow. In figure
13 we present the vorticity field for each of the cases shown in figure 12. We note that
in each case there is already a distinct difference in the shape of the ring cross-sections
at t¯ 0.5. This reflects, in part anyway, the difference in the strengths of each ring. If
the extrema ζ

max
, ζ

min
are taken as a measure of the strengths of the outer and inner

rings, then for each of the cases shown max rζ
min

}ζ
max

r lies in the range 0.85 to 0.9. In
the subsequent motion we see that as long as the two rings remain in close proximity
the action of the stronger, outer ring is to ‘strip ’ vorticity from the inner and so
elongate it. Simultaneously the inner ring is rapidly decaying due to diffusion. These
effects are most prominent in figure 13(a) where the close interaction between the rings
is most persistent. There we see that the effects of diffusion have also resulted in a
significant weakening of the outer ring. This case may be contrasted with that shown
in figure 13(c). There the rapid separation of the two rings leaves each of them
relatively intact. There is a considerable reduction in the vorticity of the inner ring in
this case, of course, as it shrinks in diameter.
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Although in many of the cases considered the inner ring is ultimately a feeble feature,
when compared with the outer, it is still possible to identify ζ

min
and create the

trajectories shown in figures 11 and 12. Similarly, in the experiments of Weidman &
Riley (1993) a small blob of dye trapped at the centre of the vortex-ring core enables
identification of that ring to be maintained. However, the results we have described
above show that the vortex trajectories themselves reveal little of the true flow
structure. We believe that our investigation has provided a much deeper insight into the
behaviour of flows associated with pairs of vortex rings of the kind first realized by
Weidman & Riley. In particular, with reference to the numerical simulations therein,
extended by Riley (1993), we comment as follows. The use of very thin viscous vortex
rings as an initial condition is helpful in delineating the wide variety of behaviour that
may be expected. However, it is very clear from figure 13 that such an initial
configuration, where the two rings are typically distinct, cannot be a good
representation of the ‘cheek-by-jowl ’ situations that are typical of the initial formation
process as seen in figure 13.

During the course of this work financial support for S.L.W. was provided by an
EPSRC research grant.
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